Underwater ROV Handling and Operations Training Course
ROV (Remotely Operated Vehicle) is a type of underwater robot that is controlled by a person aboard a vessel or onshore.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level marine engineers and technicians, and offshore operations personnel who wish to gain proficiency in operating and maintaining ROVs for underwater tasks.
By the end of this training, participants will be able to:
- Understand the history, types, and applications of ROVs.
- Identify and explain the components and systems of an ROV.
- Navigate and communicate effectively with ROVs underwater.
- Pilot ROVs with precision in various underwater scenarios.
- Perform routine maintenance and troubleshoot common issues.
- Apply safety protocols during underwater operations.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to ROVs
- History and evolution of ROVs
- Types of ROVs and their applications
ROV Components and Systems
- Understanding ROV architecture
- Electronics and control systems
ROV Navigation and Communication
- Underwater navigation techniques
- Communication systems and data transfer
ROV Piloting and Control
- Basic piloting skills
- Advanced maneuvering techniques
Maintenance and Troubleshooting
- Routine maintenance procedures
- Diagnostics and troubleshooting
Practical Operations and Safety
- Deploying ROVs in simulated environments
- High voltage safety and emergency protocols
Course Assessment
- Written examination and practical piloting test
- Maintenance competency evaluation
Summary and Next Steps
Requirements
- Basic understanding of electronics and mechanics
- Comfortable with mathematical concepts
- Good hand-eye coordination
Audience
- Marine engineers and technicians
- Offshore operations personnel
Open Training Courses require 5+ participants.
Underwater ROV Handling and Operations Training Course - Booking
Underwater ROV Handling and Operations Training Course - Enquiry
Underwater ROV Handling and Operations - Consultancy Enquiry
Testimonials (1)
I feel I get the core skills I need to understand how the ROS fits together, and how to structure projects in it.
Dan Goldsmith - Coventry University
Course - ROS: Programming for Robotics
Upcoming Courses
Related Courses
Aerial Robotics
21 HoursThis instructor-led, live training in Egypt (online or onsite) is aimed at engineers and developers who wish to design, develop, and test aerial vehicles through exploring various aerial robotics concepts and tools.
By the end of this training, participants will be able to:
- Understand the basics of aerial robotics.
- Model and design UAVs and quadrotors.
- Learn about the basics of flight control and motion planning.
- Learn how to use different simulation tools for aerial robotics.
Drone Fundamentals
7 HoursThis instructor-led, live training in Egypt (online or onsite) is aimed at anyone who wishes to understand the basics of UAS and apply drone technology in planning, operations, management, and analysis for various industries.
By the end of this training, participants will be able to:
- Gain fundamental knowledge of UAVs and drones.
- Learn about drone classifications and uses to find suitable UAVs that address different needs.
- Evaluate delivery options and regulations for the convenient operation of drones.
- Understand the risks and ethics of using drone technology.
- Explore future uses and capabilities of UAVs including integration with other technologies.
Drones for Agriculture
21 HoursThis instructor-led, live training in Egypt (online or onsite) is aimed at agriculture technicians, researchers, and engineers who wish to apply aerial robotics in optimizing data collection and analysis for agriculture.
By the end of this training, participants will be able to:
- Understand drone technology and regulations related to it.
- Deploy drones to acquire, process, and analyze crop data to improve farming and agricultural methods.
Drone Programming with ArduPilot
14 HoursThis instructor-led, live training in Egypt (online or onsite) is aimed at developers and technical persons who wish to design and develop an unmanned drone.
By the end of this training, participants will be able to:
- Setup a suitable development environment.
- Select and apply the right tools for programming a drone.
- Understand and configure the firmware, middleware and API stack.
- Test and debug their code using drone simulation software.
ROS: Programming for Robotics
21 HoursIn this instructor-led, live training in Egypt, participants will learn how to start using ROS for their robotics projects through the use of robotics visualization and simulation tools.
By the end of this training, participants will be able to:
- Understand the basics of ROS.
- Learn how to create a basic robotics project using ROS.
- Learn how to use different tools for robotics including simulation and visualization tools.
ROS for Mobile Robots using Python
21 HoursThis instructor-led, live training in Egypt (online or onsite) is aimed at beginner-level to intermediate-level and potentially advanced-level robotics developers who wish to learn how to use ROS to program mobile robots using Python.
By the end of this training, participants will be able to:
- Set up a development environment that includes ROS, Python, and a mobile robot platform.
- Create and run ROS nodes, topics, services, and actions using Python.
- Use ROS tools and utilities to monitor and debug ROS applications.
- Use ROS packages and libraries to perform common tasks for mobile robots.
- Integrate ROS with other frameworks and tools.
- Troubleshooting and debugging ROS applications.
Developing Intelligent Bots with Azure
14 HoursThe Azure Bot Service combines the power of the Microsoft Bot Framework and Azure functions to enable rapid development of intelligent bots.
In this instructor-led, live training, participants will learn how to easily create an intelligent bot using Microsoft Azure
By the end of this training, participants will be able to:
- Learn the fundamentals of intelligent bots
- Learn how to create intelligent bots using cloud applications
- Understand how to use the Microsoft Bot Framework, the Bot Builder SDK, and the Azure Bot Service
- Understand how to design bots using bot patterns
- Develop their first intelligent bot using Microsoft Azure
Audience
- Developers
- Hobbyists
- Engineers
- IT Professionals
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Developing a Bot
14 HoursA bot or chatbot is like a computer assistant that is used to automate user interactions on various messaging platforms and get things done faster without the need for users to speak to another human.
In this instructor-led, live training, participants will learn how to get started in developing a bot as they step through the creation of sample chatbots using bot development tools and frameworks.
By the end of this training, participants will be able to:
- Understand the different uses and applications of bots
- Understand the complete process in developing bots
- Explore the different tools and platforms used in building bots
- Build a sample chatbot for Facebook Messenger
- Build a sample chatbot using Microsoft Bot Framework
Audience
- Developers interested in creating their own bot
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Artificial Intelligence (AI) for Mechatronics
21 HoursThis instructor-led, live training in Egypt (online or onsite) is aimed at engineers who wish to learn about the applicability of artificial intelligence to mechatronic systems.
By the end of this training, participants will be able to:
- Gain an overview of artificial intelligence, machine learning, and computational intelligence.
- Understand the concepts of neural networks and different learning methods.
- Choose artificial intelligence approaches effectively for real-life problems.
- Implement AI applications in mechatronic engineering.
Smart Robots for Developers
84 HoursA Smart Robot is an Artificial Intelligence (AI) system that can learn from its environment and its experience and build on its capabilities based on that knowledge. Smart Robots can collaborate with humans, working along-side them and learning from their behavior. Furthermore, they have the capacity for not only manual labor, but cognitive tasks as well. In addition to physical robots, Smart Robots can also be purely software based, residing in a computer as a software application with no moving parts or physical interaction with the world.
In this instructor-led, live training, participants will learn the different technologies, frameworks and techniques for programming different types of mechanical Smart Robots, then apply this knowledge to complete their own Smart Robot projects.
The course is divided into 4 sections, each consisting of three days of lectures, discussions, and hands-on robot development in a live lab environment. Each section will conclude with a practical hands-on project to allow participants to practice and demonstrate their acquired knowledge.
The target hardware for this course will be simulated in 3D through simulation software. The ROS (Robot Operating System) open-source framework, C++ and Python will be used for programming the robots.
By the end of this training, participants will be able to:
- Understand the key concepts used in robotic technologies
- Understand and manage the interaction between software and hardware in a robotic system
- Understand and implement the software components that underpin Smart Robots
- Build and operate a simulated mechanical Smart Robot that can see, sense, process, grasp, navigate, and interact with humans through voice
- Extend a Smart Robot's ability to perform complex tasks through Deep Learning
- Test and troubleshoot a Smart Robot in realistic scenarios
Audience
- Developers
- Engineers
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Note
- To customize any part of this course (programming language, robot model, etc.) please contact us to arrange.
ABB IRB 2600ID Robot Operation and Programming
28 HoursThis instructor-led, live training in Egypt (online or onsite) is aimed at beginner-level robotics engineers who wish to thoroughly understand operating and programming the ABB IRB 2600ID robot for welding tasks.
By the end of this training, participants will be able to:
- Understand how robotics is applied in welding.
- Develop proficiency in programming the ABB IRB 2600ID robot for various welding tasks.
- Learn to safely and effectively operate the ABB IRB 2600ID robot.
- Understand the safety standards and procedures relevant to robotic welding operations.
Artificial Intelligence (AI) for Robotics
21 HoursThis instructor-led, live training in Egypt (online or onsite) is aimed at engineers who wish to program and create robots through basic AI methods.
By the end of this training, participants will be able to:
- Implement filters (Kalman and particle) to enable the robot to locate moving objects in its environment.
- Implement search algorithms and motion planning.
- Implement PID controls to regulate a robot's movement within an environment.
- Implement SLAM algorithms to enable a robot to map out an unknown environment.
AI and Robotics for Nuclear - Extended
120 HoursIn this instructor-led, live training in Egypt (online or onsite), participants will learn the different technologies, frameworks and techniques for programming different types of robots to be used in the field of nuclear technology and environmental systems.
The 6-week course is held 5 days a week. Each day is 4-hours long and consists of lectures, discussions, and hands-on robot development in a live lab environment. Participants will complete various real-world projects applicable to their work in order to practice their acquired knowledge.
The target hardware for this course will be simulated in 3D through simulation software. The ROS (Robot Operating System) open-source framework, C++ and Python will be used for programming the robots.
By the end of this training, participants will be able to:
- Understand the key concepts used in robotic technologies.
- Understand and manage the interaction between software and hardware in a robotic system.
- Understand and implement the software components that underpin robotics.
- Build and operate a simulated mechanical robot that can see, sense, process, navigate, and interact with humans through voice.
- Understand the necessary elements of artificial intelligence (machine learning, deep learning, etc.) applicable to building a smart robot.
- Implement filters (Kalman and Particle) to enable the robot to locate moving objects in its environment.
- Implement search algorithms and motion planning.
- Implement PID controls to regulate a robot's movement within an environment.
- Implement SLAM algorithms to enable a robot to map out an unknown environment.
- Extend a robot's ability to perform complex tasks through Deep Learning.
- Test and troubleshoot a robot in realistic scenarios.
AI and Robotics for Nuclear
80 HoursIn this instructor-led, live training in Egypt (online or onsite), participants will learn the different technologies, frameworks and techniques for programming different types of robots to be used in the field of nuclear technology and environmental systems.
The 4-week course is held 5 days a week. Each day is 4-hours long and consists of lectures, discussions, and hands-on robot development in a live lab environment. Participants will complete various real-world projects applicable to their work in order to practice their acquired knowledge.
The target hardware for this course will be simulated in 3D through simulation software. The code will then be loaded onto physical hardware (Arduino or other) for final deployment testing. The ROS (Robot Operating System) open-source framework, C++ and Python will be used for programming the robots.
By the end of this training, participants will be able to:
- Understand the key concepts used in robotic technologies.
- Understand and manage the interaction between software and hardware in a robotic system.
- Understand and implement the software components that underpin robotics.
- Build and operate a simulated mechanical robot that can see, sense, process, navigate, and interact with humans through voice.
- Understand the necessary elements of artificial intelligence (machine learning, deep learning, etc.) applicable to building a smart robot.
- Implement filters (Kalman and Particle) to enable the robot to locate moving objects in its environment.
- Implement search algorithms and motion planning.
- Implement PID controls to regulate a robot's movement within an environment.
- Implement SLAM algorithms to enable a robot to map out an unknown environment.
- Test and troubleshoot a robot in realistic scenarios.
Amazon Web Services (AWS) RoboMaker
21 HoursThis instructor-led, live training in Egypt (online or onsite) is aimed at developers who wish to install, configure, and manage AWS RoboMaker capabilities to create, simulate, and deploy applications for robots and autonomous vehicles and devices.
By the end of this training, participants will be able to use AWS RoboMaker to build, simulate, deploy, manage, test, and monitor robot applications.